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ABSTRACT
A new technique has been developed to study two dimensional heat

transfer problems in gears. This technique consists of transforming the
heat equation into a line integral equation with the use of Green’s theo-
rem. The equation is then expressed in terms of eigenfunctions that sat-
isfy the Helmholtz equation, and their corresponding eigenvalues for an
arbitrarily shaped region of interest. The eigenfunction are obtained by
solving an intergral equation. Once the eigenfunctions are found, the
temperature is expanded in terms of the eigenfunctions with unknown
time dependent coefficients that can be solved by using Runge-Kutta
methods. The time integration is extremely efficient. Therefore, any
changes in the time dependent coefficients or source terms in the bound-
ary conditions do not impose a great computational burden on the user.
The method is demonstrated by applying it to a sample gear tooth. Tem-
perature histories at representative surface locatons are given.

INTRODUCTION
The cooling of gears is an important problem that has been studied for

a number of years. An early model of oil cooling is given in DeWinter
and Block (1972). El-Bayoumy et al. (1989) expands on the model of
DeWinter and Block (1972) mainly by noting the importance of the
Coriolis force on oil cooling of gears. El-Bayoumy et al. (1989) also
develops a finite element model of the gear tooth. We now believe that
the finite element method has speed and accuracy limitations and have
abandoned this approach in favor of the Green’s function method
described herein.

In the next section, a new dynamic, accurate and efficient solution
method for two dimensional heat transfer problems in gears is described.
The solution method consists of transforming the heat equation into a
line integral equation with the use of Green’s functions with unknown

time dependent coefficients. The transformed integral equation is used
to obtain the dynamic equations for the time dependent coefficients for
each eigenfunction. In order to obtain the eigenvalues and  correspond-
ing eigenfunctions, the Helmholtz equation for the eigenfunctions is trans-
formed into a line integral equation by the use of the two-dimensional
free space Green’s function. The integral equation is discretized into a
set of homogenous simultaneous equations. The discretized version of
the eigenfunction can be obtained by solving a set of homogenous
simultaneous equations. The obtained dynamic equations can be inte-
grated extremely efficiently. Therefore, any changes in the boundary con-
ditions do not impose a great computational burden. In the third section,
the computational results and a discussion is presented.

FORMULATION
In this section, an accurate and efficient solution method for solving a

time dependent two dimensional heat problems in gears is developed.
The temperature field is expanded in terms of the eigenfunctions with
unknown time dependent dynamic coefficients. The dynamic equation
for the time dependent coefficients of each eigenfunction is obtained by
the use of an integral equation.

Consider a gear tooth geometry shown in Fig. 1. The transient heating
of the gear tooth is described by

∂
∂

αT

t
T= ∇2 1( )

where ∇2 = ∂2/∂x2 + ∂2/∂y2 and α is the thermal diffusivity. The
boundary condition for the left side and top of the gear is given by

K
T

n
h T Tc

∂
∂

ξ ξ= ( ) ( ) −( ) ( )2
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where the equation represents the heat output to cooling oil, ξ  is the

vector coordinate on the boundary, K is the thermal conductivity, n is the
outward pointing normal unit vector, h is the heat transfer coefficient
and Tc is the temperature of the cooling oil. The boundary condition for
loaded side (meshing surface) of the gear (right side in Fig. 1) deter-
mines the heat conduction into gear body and is given by

K
T

n
F

∂
∂

ξ= ( )0 3( )

where F0 is the heat flux into the gear and the remainder of the
boundary is described by the vanishing normal derivative of the tem-
perature, ∂T/∂n = 0.

Dynamical Equations f or Transient Heat Flo w
Rather than solve the physical equations directly, as in a finite element

method or finite difference method, we develop here a Green's function
method that reduces the two-dimensional problem to a one-dimensional
line integral over the gear tooth boundary. The line integral equation
yields the dynamical equations. This procedure yields a computational
advantage over the previous approaches where there is no reduction in
the problem dimensionally and the time and spatial integrations are per-
formed simultaneously.

The heat equation is transformed into a line integral equation by using
Green’s theorem, (Wyld, 1972)

T T ds T
n

T

n
dln n

n
n∇ − ∇( ) = −



∫∫ ∫2 2 5ψ ψ ∂ψ

∂
ψ ∂

∂
( )

where  ds  is the surface element and  dl  is the line element. Substituting
Eqs. (1) and (4) into the left hand side of Eq. (5) yields

 k T ds
T

n
ds

T

n
dln n n n

a

c
2 1

6∫∫ ∫∫ ∫+ =ψ
α

ψ ∂
∂

ψ ∂
∂

( )

where the vectors  a and c  in the integration limits are shown in Fig. 1
(a driven gear). Note that a considerable simplification has been accom-
plished for the line integral on the right hand side of  Eq. (5). The only
contribution comes from the boundary conditions described by the non-
vanishing normal derivatives, Eqs. (2) and (3). Substitution of Eqs. (2)
and (3) and expansion of the temperature field in terms of the
eigenfunctions as

T x t t xn

n

n, ( )( ) = ( ) ( )∑η ψ 7

yield a dynamic equations for the time dependent coefficients, ηn,

˙ ( )η α η α ηn n n mm

m

m n nk
K

A B C+ = + +










∑2 8

where

A h dl amm
a

b

m n= ( ) ( ) ( )∫ ξ ψ ξ ψ ξ ( )9

B T h dl bn c
a

b

n= − ( ) ( )∫ ξ ψ ξ ( )9

C F dl cn
b

c

n= ( ) ( )∫ 0 9ξ ψ ξ ( )

The line integrals are easily calculated as the boundary conditions are
changed. Therefore, the calculation burden for changing the boundary
conditions is minimal. These coupled first order equations in Eq. (8) are
integrated efficiently with Runge-Kutta method.

Eigenvalues and eig enfunctions
The method for obtaining the eigenvalues and eigenfunctions used to

effect the simplification of the previous section is given below. These
functions are two dimensional analogs of the trigonometric functions
used in Fourier methods.

The eigenvalues, kn and the corresponding eigenfunctions, ψn are
obtained through the use of  two dimensional free space Green’s func-
tion (Koshigoe and Tubis 1989),

Figure 1.—Simulated gear tooth geometry and all the
   boundary conditions.
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We assume, the following eigenfunctions, ψn, and eigenvalues, kn are
known and the eigenfunctions satisfy the Helmholtz equation,

∇ +( ) =2 2 0 4kn nψ ( )

inside the gear tooth with vanishing normal derivative,  ∂ψn/∂n = 0. (The
method for obtaining the eigenvalues and eigenfunctions is given in the
following section.) It can be  shown that these eigenfunctions are or-
thogonal. The eigenfunctions will be normalized to unity by

ψ ndxdy2 1∫∫ = .
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G x x H k x xo n′( ) = − ′( )1
4 101( ) ( )

where H0
(1) is the Hankel function of the first kind and the Green’s func-

tion satisfies the inhomogeneous Helmholtz equation,

∇ +( ) ′( ) = − − ′( )2 2 11k G x x x xn δ ( )

where  δ( x )  is the delta function.

Again utilizing Green’s theorem, one obtains
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        ( )

With the use of Eqs. (4) and (11) and vanishing normal derivative bound-
ary condition  for the eigenfunctions the integral equation is simplified

ψ ψ ξ
∂ ξ

∂n nx
G x

n
dl( ) + ′( )

′( )
′

′ =∫ 0 13( )

This integral equation yields the value of  ψn at any location inside the
gear tooth when the values of   ψn  on the gear tooth boundary are known.
Now let  x approach a point, ξ   on the gear tooth boundary, then Eq. (13)
becomes

β ψ ξ ψ ξ
∂ ξ ξ

∂ξ n nP
G

n
dl( ) + ′( )

′( )
′

′ =∫ 0 14( )

where βξ  is the contribution from the singularity in the integrand

(Burton and Miller 1971) and is given by:

β ξ πξ = inside angle at the point ( )2 15

and  P  designates the Cauchy principal value integral. The eigenfunction,

ψ n  is discretized in Eq. (14) and yields a set of simultaneous equations.
The eigenvalues, kn are determined by setting the determinant of the
simultaneous equations to zero. Once the eigenvalues are determined,
the corresponding eigenfunctions can be obtained through the
simultaneous equations. The formulation developed in this section can
now be applied to the gear tooth geometry (shown in Fig. 1) and the
calculation result discussed.

SAMPLE CALCULATION
The technique developed in the previous section is applied to the gear

tooth geometry shown in Fig. 1. Various coordinates are labeled in Fig. 1

in order to specify the key features of the gear tooth geometry. The
cooardinates of these points are given in table 1. The physical constants
used for the calculation are: the gear thermal diffusivity, α = 0.452 ft2/hr;
the thermal conductivity, K = 25 Btu/hr/ft/F; the oil temperature, Tc =
200 F; the heat transfer coefficient, h = 0.34 Btu/sec/ft2/F follows from
DeWinter and Block (1972) and El-Baypoumy et al. (1989).

The heat flux, F0, along the boundary from the location ξ  =  b  to c
(shown in Fig. 1), is given as a function of the distance measured from
the point  b  (shown in Fig. 2). This is the heat generated in mesh for a 1-
inch wide gear, with a pitch radius of 6 inches, rotating a 10,000 rpm and
transmitting 500 hp. We are interested in gear steady-state temperatures
that take hundreds of seconds to reach. Hence, the detailed temperature
changes that occur as the gear goes in and out of mesh cannot be re-
solved. Thus, both the heating and the cooling have been averaged over a
complete revolution cycle.

y, inches

0.541
  .795
  .337
  .184
  .184
  .000

Table  1.—Coordinate of
Points in Figure 1

Figure 1
location

a
b
c
d
e
f

x, inches

–0.197
    .073
    .274
    .318
    .371
    .362

The temperature calculation was performed using 21 eigenmodes. (This
was found to provide adequate convergence.) The results presented herein
were generated on a 486–PC with a total running time, including the
costly eigenfunction generation, of less than one hour.

Figure 2.—Time-averaged heat input to gear.

0.0 0.7

5

0.6

30

0.1

10

20

15

25

35

H
ea

t 
flu

x,
 F

0,
 B

tu
/s

ec
/f

t2

0.50.40.30.2
Distance from the point b, in.

0



4

The eigenvalues and the corresponding eigenfunctions are obtained
through the use of discretized version of Eq. (14). The discretization is
carried out with 40 line elements and on each element, the second order
approximation is used to represent the geometry as well as the
eigenfunctions. The temperature calculations at three different locations
on the gear tooth boundary, (0.0,0.397) represented by the solid line,
(–0.228,0.066) by the dashed line, and (0.174,0.194) by the dotted line
are shown in Fig. 3 as functions of time. The curve labeled T1 is centered
on the top of the gear at location (0.0, 0.795). T2 on the cooled side of
the gear in the region cooled by the oil at (–0.228, 0.464). T3, the highest
curve, is on the side heated during mesh, slightly above the pitch point at
(0.174, 0.592). Because both the heating and cooling functions have been
averaged over a complete gear revolution, these temperatures can best be
interpreted as out-of-mesh temperatures.

At the present time the calculation method is hard wired for a single,
but representative, problem. Furthermore, we have not yet included the
triangular portion of the gear extending to the axis of rotation. Generali-
zation of the method is planned now that its application to a specific
problem has been demonstrated. Appendix A “Thermal Analysis of Spur
Gears”  provides the geometric formulation input.

CONCLUSION
A new technique has been developed to study two-dimensional heat-

ing of gears. The computational advantage of this technique over

previous approaches using the finite element method or the finite dif-
ference method results from two features: First, the problem is reduced
from two dimensions to one. Second, the time and spatial integrations
are separated. Therefore, when compared with other methods, this new
technique can provide substantial improvements (one order of magni-
tude) in computational speed. However, the benefit of the dimensional
reduction is manifested not only in the computation speed but also in
the ease of problem set-up since one is required to deal with the bound-
ary not the entire two-dimensional gear geometry. The other benefit of
this technique, based on the separation of time and spatial integration,
is accuracy. This technique takes the full advantage of the spectral
method that has exponential solution convergence. This should be com-
pared to finite element or difference methods where only algebraic con-
vergence is possible.

Since the new technique is extremely efficient, any changes in the
time dependent coefficients or source terms in the boundary conditions
do not impose a great computational burden on the user. This result is
very important when performing accurate Scoring Analysis in gears.
This allows the bulk (or blank) temperature to be accurately known.
Furthermore, the gear out-of-mesh temperature is not a constant along
the tooth profile at steady state running conditions, as is often assumed
by gear engineers. The method is also more adaptable for use in small,
lubricated, concentrated contacts, such as gears, since high resolution
can be obtained without using large numbers of elements.

Currently, we are planning to extend this technique to a multiblock
application that includes the remainder of the gear sector and that further
optimizes the computation accuracy and speed.
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Figure 3.—Gear surface temperature at selected locations.
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APPENDIX A

THERMAL ANALYSIS GEOMETRY FOR SPUR GEARS

by

Lee S. Akin * and Dennis P. Townsend **

ABSTRACT
The gear geometry needed to perform a complete thermal analysis for

a gear set is very complex and has, to the authors knowledge, never been
published before as one set of equations needed for the analysis. The
thermal analysis of gears is a very important subject in that it can be used
to determine the scoring failure criteria which includes the blank (bulk)
temperature and the flash temperature as used in the Blok scoring
formula.

1. T T Tt f b= +

The geometry for this analysis must include the involute geometry,
the load variance when the teeth mesh is in a single or double tooth
contact zone,  tooth load sharing due to varying deflection, long and
short addendums, tip and/or root relief.  Also included are the affect of
heat partitioning due to varying tooth contact sliding velocities over con-
stantly changing Hertzian contact band widths, gear set speed and its
affect on the lubrication regime (film thickness versus surface rough-
ness).

This geometry analysis will be used as the input parameters to com-
plete the analytical computation of running gear temperatures using
Green’s function.

INTRODUCTION
This is one more in a series of papers by the authors on their continued

study of the art of the prediction of the onset of scoring or scuffing in
high performance gear drive mechanisms and our attempt to make it
more scientific. These studies have examined a series of disciplines from
an interdisciplinary lubrication theory (ref. 1), to a study of the effect of
windage on the lubricant flow into high speed gear teeth (Ref. 2) and  a
model for lubricant flow in between gear teeth (Refs. 3, 4, 6, 7, 10
and 11, 13, 16).

In addition these studies have evaluated the analytical and experimen-
tal spur gear temperature effects on operating variables (Ref. 5), gear
lubrication and cooling studies (Refs. 7 to 9, and 12), investigations of
affect of transient (time variant) thermal and lubricant boundary layers
(Refs. 14 and 15).

Most of the above and all of the thermal work was done using finite
element methods which produce large matrixes causing slow computer
solutions to provide satisfactory accuracy.  This geometry analysis is
developed for, "a computer program for the computation of running gear
temperatures using Greens function" provides a new and unique solution

to the gear temperature analysis problem. The above is accomplished by
using special integration techniques newly developed to accommodate
the special conditions found in lubricated concentrated sliding contacts,
such as found in high performance aircraft gear drives.  This appendix
describes the intricate gear geometry needed for this analysis, mostly
available in the literature but certainly not all in one place.  This paper
hopes to fill that need.

FORMULATION OF GEOMETRICAL EQUATIONS
The equations for the involute curve in rectangular coordinates is shown

in equation set 2 (see Fig. 1).

* Gearesearch Associates. ** NASA-Lewis Research Center.
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Figure 1.—Involute curve geometry.
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The polar/vectorial angle θ, in Fig. 1 may  be calculated from:

3.

θ

φ φ φ

= + −( ) =
−( )

−
−( )















= − =−

x y R
R

R R

R

R R

R
inv

b
b

b

b

b

b

2 2 2 1 2
2 2 1 2

1
2 2 1 2

1/
/

/

                tan tan

where:   R
N

P
R

N

P
R Ro b= = + =

2

2

2
& & cosφ

so that the pressure angle φ  in Fig. 1 is:

4. θ =
+( )

=− −tan cos

/

1
2 2 1 2

1
R R

R

R

R

b

b

b and the roll angle is ε = θ + φ =

tanφ. The important radii of curvature equations, some at critical loca-
tions, are shown below in equation set 5, and see Figs. 1 and 2:

5. ρ = Rsinφ = εRb and for the mating gear ρm = Rmsinφ = εmRbm

The lowest point of contact for the mesh is ρc calculated from:

ρ φc o bC R R= − +( )sin
/2 2 1 2

and

ρcm om bmR R= +( )2 2 1 2/

R C R R Rc o b b= − +



 +













sin

/

φ 2 2
2

2
1 2

where C sin φ = La the line of action, and

R C R R Rcm om bm bm= − +



 +













sin

/

φ 2 2
2

2
1 2

 is the lowest point on the mating gear. The radii of curvature at the low-
est  and highest  points of single tooth contact may be calculated from:

ρ ρl o b l l bR R R R= +( ) = +( )2 2 1 2 2 2 1 2/ /

ρ φh om bm bC R R p= − ( ) +sin –
/2 2 1 2

R Rh h b= +( )ρ2 2 1 2/

where the base circle pitch is p
Nb = 2π φcos  and the circular pitch

is p
D

N
= π

. The distance of roll/slide S along the involute curve

may be calculated by integrating over the roll angle ε, from (vogle,
Ref. 17), see Fig. 1:

6. S R d
R R

b
b b= = = −( )∫ε

ε

ε
εε ε ε ε ε

1

2

1
2

2 2
2

2
2

1
2

and since, as can be noted from Fig. 1, ρ ε φ= =R Rb b tan  and
Rb

ε ρ=

thus S
Rb

1 2
2
2

1
2

2− = −ρ ρ
 over any arbitrary portion of the profile with sub-

scripts 1 and 2 and S
Rc o

c

b
− =

−ρ ρ0
2 2

2 over the whole profile from the first

point of mesh contact on the profile at Sc to the last point at outside
diameter So.  For example: from Rc to Rl to R (at pitch point) to Rh  to
Ro at the outside radius.  The arc length along the base circle ∑ can be

f

f

Single tooth contact
Length of line of contact
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Figure 2.—Gear mesh line of action geometry.
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calculated from (were subscripts 1 and 2 are at arbitrary locations on the
tooth profile) as shown.

7. ∑1–2 = Rb(ε2 – ε1) = Rb (tanφ2 – tanφ1)so that ∑1–2 =

R
R Rb

b b

ρ ρ ρ ρ2 1
2 1−







= − and thus the ratio between the distance S and

the distance ∑ becomes k
Rb

= +ρ ρ2 1

2
a quantity useful in thermal calcu-

lations. The transition time, as a function of radii of curvature and its

rolling velocity between any two points along the tooth, can be expressed
in equation set 8 as:

8. V
d

dt

d

dt
R R

rad
b b= = =ρ ε ω

sec

where:

d

dt

ε ω= , a constant and since ρ = εRb then dε = ωdt and 
ω
ε

ρ
ρ

dt
d= , so

that 
d

t t
t t

Rb

ρ
ρ

ρ
ρ

ω
ε ε

ω

ρ ρρ

ρ

1

2 2

1 2 1
2 1

2 1

2 1
1∫ = =

−
−( ) =

−( )
−( )

ln  and ∆t1,2 =

(t2 – t1) = 
ρ ρ

ω
ρ
ρ

2 1 2

1

−
Rb

ln  is the time it takes for the gear to rotate from ε1

to ε2.  The critical dimensions along the line of action are shown in fig-
ure 2 and described below in equation 9:

9.  Z R R R R Co b o b= − + − −1
2

1
2

2
2

2
2 sin φ  is the length of the "line of

contact b – f" as a subset of the "line of action a – g."
Now we can calculate the width of the Hertzian band of mutual con-

tact at the mesh point from equation 10: (Timoshenko Ref.18)

10. B
W K K

F
n=

+( )
+( )







16 1 2 1 2

1 2

1 2
ρ ρ

ρ ρ

/

 where: K
E1

1
2

1

1= − ν
π  and

K
E2

2
2

2

1= − ν
π  and K K

E1 2

22 1+ = −




π
ν

 and since: ρ1 + ρ2 = La = C sinφ

and Wn = Wt/cosφ = Wtsecφ, see Fig. 3, and E1 = E2 = E

B
W

F C E

t
=

−( ) ( )3 19
1 2

1 2
1 2

.
cos sin

/ν

φ φ
ρ ρ

The rolling velocity for the gear V1 and it's mating gear V2 are calcu-
lated from equation set 11:

11.  V
n

1
1 1

360
= πρ

 ft/sec and V
n

2
2 2

360
= πρ

 ft/sec, so that the sliding

velocity V V V n ns = − = −( )1 2 1 1 2 2360

π ρ ρ  ft/sec where: V1 = V & V2 =

Vm.

f
WR WN WN = Wt/cos f


WR = Wt tan f

Wt

Figure 3.—Gear tooth profile showing normal load WN.

Therefore the rolling velocity anywhere along the profile can be cal-

culated from: V i
1 114 59

= πρ
.

 ft/sec and V
n m

m
m= ρ

114 59.
  ft/sec for the mat-

ing gear so that the sliding velocity is calculated from: V
n n

is
m imi=

+ρ ρ
114 59.

ft/sec where n = speed of gear and  nm = the speed of the mating gear.
Another value needed to calculate the coefficient of friction is the total

velocity from: V
n n

t
m imi=

+ρ ρ
114 59.

 ft/sec.

We can now calculate the coefficient of friction as:

12. f
W

F V V
t

cp s t
=

×







0 0127

3 17 10
10

6

. log
. secφ

µ
 where F = tooth face width,

µcp = viscosity in centipoise and Wt = tangential tooth load in lbs.  Thus
we find ourselves in a position to calculate the instantaneous heat flux
q(ρ)I as a function of the radius of curvature at the instantaneous posi-
tion “i” along the line of contact per equation Set 13.

13.                q
W f n n

i
t i m imρ

φ ρ ρ( ) =
( ) −( )sec

170 330
 BTU/min

This equation can also be written in a form more useful using the
pinion speed only:

q
W n f

mi
t

pi g giρ
φ

ρ ρρ( ) =
( )

−( )sec

170 330
 BTU/min, where m

N

Ng
g

p
=  the

gear ratio.  At times it is more convenient to calculate the hear flux from
the radius vector at the instantaneous contact points where:

qR
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R

pb

gLPC

go

pLPC

po

=
( )

−( ) − −











+ −











sec
sec

/ min

/

/
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φ

170 330
1 2 2

1 2

2 2
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CLOSURE
This appendix develops the geometry analysis for the input for

the computer solution of the thermal analysis of spur gears using
Green's function to solve for gear blank surface temperatures.  This
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geometry analysis provides the gear tooth geometry input, the
gear tooth sliding distance parameters, the rolling and sliding
velocity inputs and the equations for the frictional heating
developed during the gear tooth meshing, as a function of the
location on the gear tooth.

Using these inputs the program can then determine the transient
and steady state temperatures of the gear teeth.
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NOMENCLATURE FOR APPENDIX A

B width of the band of mutual contact at the mesh point

C center distance for mating pair

E Young's modulus of elasticity

F face width

f coefficient of friction

Mg gear ratio Ng/Np

N number of teeth in gear and Nm number of teeth in
the mating gear

n pinion speed, rpm, nm  for mating gear and  np
for pinion

P diametral pitch of the teeth

pb circular pitch of gear and its mating gear

qRt heat flux calculated using the instantaneous radius
vector

q(ρ1) heat flux due to sliding friction at instantaneous point
of contact using the radius of curvature as a
parameter

R radius vector to the pitch point and  Rm for the mate
at the contact point

Rb base radius of the involute curve (its origin) and  Rbm
for mating gear

Rc radius vector to lowest point of contact from center
of gear and  Rcm  for mating gear

Rgb & Rpb base radius of gear and pinion respectively

Rgi & Rpi instantaneous radius  og  gear and pinion respectively

Rgo & Rpo outside radius of gear and pinion respectively

RLPC2 & RLPC1 lowest point of contact for gear and pinion
respectively

Ro outside radius of the gear and end of the involute
curve and  Rom for mating gear

R1 & Rh radius vector to lowest and highest points of single
tooth contact

V velocity along the curve (involute)

Vs the sliding velocity at an instantaneous point v1 – v2
in the mesh

Vt the total velocity at an instantaneous point in the mesh
v1 + v2

V1 rolling velocity of the gear and its mating gear

Wt & Wn tangential and normal (perpendicular) load,
respectively

x & y Cartesian coordinates of the involute curve from its
origin at the base circle

Z length of the line of contact as a subset on the line
of action

∆t1,2 the time it takes to rotate from ε1 to ε2

∆N virtual number of teeth expansion or reduction for
long and short addendums

ε roll angle on tooth

θ involute polar angle = invφ = tanφ – φ = ε – φ (rad)

µcp oil viscosity, in cp

ρ radius of curvature from the base circle and ρm for
the mating gear at contact point

ρc radius of curvature at lowest or initial point of
contact from base circle and ρcm for mating gear at
 contact point

ρ1 & ρh radius of curvature at lowest and highest points of
single tooth contact

φ pressure angle of mesh
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